若何摈除了人类那个宏大大颇为的挑战?一个最佳的格式即是:没实用煤油,斲丧可能做作降解的塑料! 没实用煤油,那用甚么往斲丧塑料?好国康奈我小大教终去世教授罗丹魔难魔难室钻研职员争先给出了一个可能的处置格式:用做作DNA!用做作DNA做可降解塑料的钻研由罗丹魔难魔难室专士后王栋专士收衔,功能远期以少论文(Article)模式宣告正在化教规模的顶尖杂志《好国化教会志》上(Journal of the American Chemical Society, 2020, 142, 22, 10114-10124.)。尾要开做者有崔金辉,苦明哲,刘培峰战俯小大怯等教授。
Figure 1. Mechanism of molecular cross-linking and preparations of biomass DNA materials. (A) Aza-Michael addition-based cross-linking of biomass DNA. (B–I) Biomass DNA hydrogels made from blue-green algae, E. coli, onion, and salmon testes. (Top) Photographs of DNA hydrogels; (bottom) fluorescence images of DNA hydrogels stained by DNA specific dyes: GelRed or SYBR Green I. (J and K) A photograph and an SYBR Green I-stained fluorescence image, respectively, of a biomass DNA organogel. (L and M) A photograph and a GelRed-stained fluorescence image, respectively, of biomass DNA membrane triggered by a妹妹onia. (N) A photograph of T-puzzle toys made from biomass DNA materials. The colors were from food dyes. (O) A photograph of a meter scale biomass DNA hydrogel on a glass plate. (图片去历JACS)
Figure 2. Mechanical properties and biofunctions of biomass DNA hydrogels. The stress–strain curves (A) and the young’s moduli (B) of biomass DNA hydrogels with different DNA contents. (C) Photographs of a hydrogel (with 8.3% biomass DNA) being cut by a razor blade. (D) A series of video screen shots of a rubber-like biomass DNA hydrogel showed a quick and reversible shape recovery. (E) Preparation and protein expression processes of biomass DNA hydrogel for cell-free protein production. Comparison of fluorescence intensities and images (insets) (F) and comparison of expression efficiencies (G) of GFP expressed between the biomass DNA hydrogel and the control samples. (H and I) Cytotoxicity assessment of biomass DNA hydrogels on two cell lines: Caco-2 and MCF-7, respectively. (J) Cumulative controlled release profiles of insulin in biomass DNA hydrogels. Error bars represent the standard deviation of three measurements. (图片去历JACS)
Figure 3. Preparation and mechanical and adhesive properties of biomass DNA organogels. (A) Preparation scheme of biomass DNA organogels. (B) Variations of morphologies and appearances in the preparation process of biomass DNA organogels. The percentage numbers represented glycerol/water plus glycerol (wt %). The stress–strain curve (C) and corresponding stretching photographs (D) of an organogel with 31.6% biomass DNA. (E) Adhesive strengths of biomass DNA organogels with different pHs on different substrates (#P > 0.05, *P < 0.05, **P < 0.01). (F) Temperature-dependent adhesive strengths of biomass DNA organogels on a Teflon surface. (G) At −20 °C, a cell phone was completely lifted by a very small biomass DNA organogel (about 0.4 cm2). Significance according to a one-tailed homoscedastic t test. Error bars represent the standard deviation of 3 measurements. (图片去历JACS)
Figure 4. Gas-triggered functional composite membranes made from biomass DNA. (A) A large-scale preparation of biomass DNA hydrogel membrane triggered by a妹妹onia. (B–I) Photographs of biomass DNA composite membranes with SWCNT, GO, Au nanoparticles, iron oxide particles, nanoclays, PEDOT:PSS, PDA, and Tb3+, respectively. (J) A fluorescence image of DNA-SWCNT composite membrane stained by GelRed. (K) A fluorescence image of DNA-Tb3+ composite membrane. (L) A laser confocal microscopic image of DNA-SWCNT composite membrane stained by GelRed. (M and N) Cross-sectional SEM images of DNA-SWCNT and DNA-iron oxide particles composite membrane, respectively. (O and P) A photograph and a fluorescence image (GelRed), respectively, of a pattern consisting of groups of diamond-shaped holes by a negative etching of a DNA-SWCNT membrane. (Q and R) A photograph and a fluorescence image, respectively, of a positive pattern consisting of groups of diamond shapes by spraying Tb3+ solution on a masked DNA membrane. (S and T) A photograph and a fluorescence image, respectively, of a four-component biomass DNA flower fused together. (U) The DNA flower closed by applying a magnetic field. (scale bars: 1 cm). (图片去历JACS)
Figure 5. Demonstration of biomass DNA plastic objects. (A) Biomass DNA-coated copper wires. (B and C) Insulating biomass DNA coatings switched a circuit on and off, respectively. (D) Biomass DNA T-puzzle toys. (E) A biomass DNA spoon. All of the colors were from food dyes except that of the spoon (E), which was a natural color. (图片去历JACS)